Intrusion Detection Systems Correlation: a Weapon of Mass Investigation

Pierre Chifflier Sébastien Tricaud

INL
101/103 Bvd MacDonald
75019 Paris, France

CanSecWest Vancouver 2008
Outline

1 Introduction
2 Correlation
3 Visualization
4 Conclusion

Pierre Chifflier, Sébastien Tricaud
Intrusion Detection Systems Correlation: a Weapon of Mass Investigation
What are IDSs?

- Intrusion Detection Systems
- Marketing folks may call it
 - Intrusion Prevention System (IPS)\(^1\)
 - Security Information and Event Management (SIEM)
- Since IPS and SIEM sound too 2005, we stick to IDS

\(^1\)To prevent an attack, we should first detect it ;)

Pierre Chifflier, Sébastien Tricaud
What are they?

- Host IDS (HIDS): Not (really) prone to false positives
- Network IDS (NIDS): Cannot decrypt unknown encrypted traffic, is not the target machine and sensitive to false positives
- Hybrid IDS (HbIDS): Mixes HIDS and NIDS
Interesting sources of information out there

Why do we keep our interest in Hybrid IDS when we have more than just NIDS and HIDS?
Interesting sources of information out there

Why do we keep our interest in **Hybrid IDS** when we have more than just **NIDS and HIDS**?

Low Level Sources:

- **Routers**: Cisco, Linksys, Juniper, . . .
- **Firewalls**: Netfilter, NuFW, Checkpoint, pf, . . .
- **Operating systems**: System logs, users, running applications, . . .
- **Physical**: Alarm, . . .
Raiders of the lost meta-IDS

Interesting sources of information out there

Why do we keep our interest in **Hybrid IDS** when we have more than just NIDS and HIDS?

Low Level Sources:
- **Routers:** Cisco, Linksys, Juniper, ...
- **Firewalls:** Netfilter, NuFW, Checkpoint, pf, ...
- **Operating systems:** System logs, users, running applications, ...
- **Physical:** Alarm, ...

High Level Sources:
- **Honeypots:** Nepenthes, ...
- **Network:** Snort, Sancp, NuFW, ...
- **Host:** Auditd (SELinux), Linux PAM, Samhain, Ossec, Prelude LML, ClamAV ...
- **Scanners:** Nessus, p0f, nmap ...
Meta IDS (MIDS)

Hybrid IDS
An Hybrid IDS combines HIDS and NIDS.

Meta IDS
A Meta IDS (MIDS) mixes any element that can send data useful for intrusion detection as a whole

Prelude IDS
Prelude IDS has evolved to a Meta IDS
Examples of alerts:

- **OSSEC**: SSHD authentication success.
- **Prelude LML**: Admin login successful
- **Snort**: BLEEDING-EDGE SCAN NMAP -f -sS
- **ClamAV**: Eicar-Test-Signature (succeeded)
- **Auditd (SE Linux)**: App Abnormal Termination
Raiders of the lost meta-IDS

Correlation path

- **Meta-IDS** → **Filter** → **Enhancement**
 - **Enhanced alerts** → **Find relations** → **Correlated alerts**
 - **Reconstruct** ← **Filtered alerts** ← **Alerts**
 - ** Attacks** ← **Reaction** ← **Meta-IDS**
The correlation challenge

What everybody knows: IDS limitations

- Too much information
- Limited view
- False positives
- False negatives
- Evasion (fragmentation, signature, time, …)
IDS correlation

- To limit IDS pitfalls, we need correlation
 - We need a Meta-IDS
 - We need a scalable and distributed architecture to centralize information
 - We need to define accurately each alert and each agent
The correlation challenge

The IDMEF: Intrusion Detection Message Exchange Format

- Normalize agent alerts regardless of their nature
 - Alert information is inherently heterogeneous
 - Intrusion detection environments are different
 - Analyzer capabilities are different
 - Operating environments are different
 - Commercial vendor objectives are different

- Provides an exhaustive vocabulary to IDS developers and users

⇒ IDMEF (RFC 4765)

http://www.rfc-editor.org/rfc/rfc4765.txt
The correlation challenge

Prelude IDS

- Meta-IDS implementing IDMEF
 - libprelude, libpreludedb
 - Prelude LML: Analyze logs
 - Prelude Correlator: Correlate alerts from agents
 - Prelude Manager: Centralize and store/deliver/relay alerts
 - Prewikka: Graphical interface

- Required capabilities for correlation:
 - **Encryption** between agents and manager, manager to manager
 - **Failover**, whenever alerts cannot be sent to the manager
 - **Relaying** to centralize, backup and filter alerts
 - **Reverse relaying** to keep DMZ secure
 - **Normalize** your alerts: Complete the IDMEF message
The correlation challenge
The correlation challenge

Prelude user architecture
1 Introduction
2 Correlation
3 Visualization
4 Conclusion
Objectives

What?

- Concentrate on high-level analysis
- Reduce noise created by false positives or harmless events
- Fight evasion
- Discover new attacks
Correlation

Objectives

What?
- Concentrate on high-level analysis
- Reduce noise created by false positives or harmless events
- Fight evasion
- Discover new attacks

How?
- Use trust score to improve the reliability
- Combine elements from heterogeneous sources (use the Meta-IDS !)
- Reconstruct and understand the attack
Correlation

Trust score (TS)

\[TS = \text{severity of the alert} \times \text{accuracy of the alert} \]

- 0 (false alarm) < \(TS < 1 \) (known and verified attack)
- Initial value depending on the alert (analyzer and signature reliability)
- NIDS: high probability of false alerts \(\Rightarrow \) low TS
- Will be adjusted during correlation steps
- Will be used to take the final decision
Understand an attack

Objectives:

- Reconstruct the sequence of events
- Detect the targets, protocols, tools, ...
- Adapt the severity
- Reduce false positives
- Prepare for an eventual counter-measure
- Ensure the Security Policy is properly applied
Understand an attack

Objectives:

- Reconstruct the sequence of events
- Detect the targets, protocols, tools, . . .
- Adapt the severity
- Reduce false positives
- Prepare for an eventual counter-measure
- Ensure the Security Policy is properly applied

Tools:

- Normalization, Centralization
- Correlation
- Visualization
Correlation

VoIP provider network

Registration

Billing

Proxy

Gateway

PSTN

1. Registration
2. Proxy
3. Registration → Billing
4. Proxy → Billing
5. Billing → Gateway
6. Gateway → PSTN
7. PSTN → Phone
VoIP provider network

1. Registration
2. Proxy
3. Registration to Proxy
4. Proxy to Gateway
5. Billing to Gateway
6. Gateway to PSTN
7. PSTN to Phone

Pierre Chifflier, Sébastien Tricaud

Intrusion Detection Systems Correlation: a Weapon of Mass Investigation
Correlation

Meta-IDS → Filter → Enhancement

Alerts → Filtered alerts → Enhanced alerts

Reaction → Reconstruct → Find relations

Attacks → Correlated alerts
Filtering

- Normalize input (*classification.text, analyzer type*)
- Apply initial filtering
- Compression: replace \(n \) alerts by one, keeping all information
- Threshold: if \(n > \text{threshold} \), ignore other alerts (loosing information)
Correlation

Alerts → Normalization → Selection → Threshold Compress → Filtered Alerts

<table>
<thead>
<tr>
<th>Alert</th>
<th>Filtered alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSHD authentication success</td>
<td>User login attempt completion: success</td>
</tr>
</tbody>
</table>
Correlation

Alerts → Normalization → Selection → Threshold Compress → Filtered Alerts

<table>
<thead>
<tr>
<th>Alert</th>
<th>Filtered alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSHD authentication success</td>
<td>User login attempt completion: success</td>
</tr>
<tr>
<td>User login failed (Alice)</td>
<td>User login attempt (2 × Alice) completion: failed</td>
</tr>
<tr>
<td>User login failed (Alice)</td>
<td></td>
</tr>
</tbody>
</table>
Correlation

Alerts → Normalization → Selection → Threshold Compress → Filtered Alerts

<table>
<thead>
<tr>
<th>Alert</th>
<th>Filtered alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSHD authentication success</td>
<td>User login attempt completion: success</td>
</tr>
<tr>
<td>User login failed (Alice)</td>
<td>User login attempt $(2 \times Alice)$ completion: failed</td>
</tr>
<tr>
<td>User login successful (Alice)</td>
<td>dropped</td>
</tr>
</tbody>
</table>

Pierre Chifflier, Sébastien Tricaud

Intrusion Detection Systems Correlation: a Weapon of Mass Investigation
Correlation

Alerts Filter Correlated alerts

Meta-IDS Reaction Reconstruct

Filtered alerts Enhanced alerts Find relations

Intrusion Detection Systems Correlation: a Weapon of Mass Investigation

Pierre Chifflier, Sébastien Tricaud

INL 101/103 Byd MacDonald, 75019 Paris, France
Enhancement (enlarge your alerts)

Simple Alerts ➔ Passive ➔ Active ➔ External ➔ Enhanced Alerts

Passive Information Collection (PIC):

- Passive data (OS, applications, versions, inventory)
- Profiling (sancp)
- OSVDB, BID, CVE, patches, known exploits
- Current attacks (DShield)
- Passive … or not! (hint: Nessus)
Post-enhancement filter

- Send alerts on spurious changes
- Re-evaluate alert with additional data
 - Delete alert or lower trust score if the target is not affected
 - Increase trust score if affected
Correlation

Filtered Alerts → Addition → Post-addition filter → Enhanced Alerts

Filtered alert

"THCIISLame IIS SSL Exploit Attempt"

Enhanced alert

"THCIISLame IIS SSL Exploit Attempt"

Host OS: Linux 2.6.24

Exploit www.thc.org/exploits/THCIISSLame.c **dropped**
Find relations

Attack definition

- An attack is a sequence of alerts or events with a particular relation
- \(\text{Attack} = n \times \text{alerts} \)
- \(n \geq 1 \)
- Classification of the \textit{attack} can be done \textit{after} the entire correlation
Find relations

Meta-IDS → Filter → Enhancement

Alerts → Filtered alerts → Enhanced alerts

Reconstruct → Find relations

Reaction → Attacks

Correlated alerts
Find relations

- Equivalence
- Similarities, during a time window (source, destination, attack vector, ...)
- Archive / knowledge database (known patterns)
- Search on a long time range
- Regular events
Find relations

<table>
<thead>
<tr>
<th>1. Scan</th>
</tr>
</thead>
</table>

Pierre Chifflier, Sébastien Tricaud

Intrusion Detection Systems Correlation: a Weapon of Mass Investigation
Find relations

1. Scan
2. Connection
Find relations

1. Scan
2. Connection
3. Connection
Find relations

<table>
<thead>
<tr>
<th>Enhanced Alert</th>
<th>Correlated alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port scan +</td>
<td>Sequence</td>
</tr>
<tr>
<td>Incoming connection +</td>
<td>3 elements</td>
</tr>
<tr>
<td>Outgoing connection</td>
<td></td>
</tr>
<tr>
<td>source/dest</td>
<td></td>
</tr>
<tr>
<td>OSSEC</td>
<td>SSH login attempts</td>
</tr>
<tr>
<td>SSHD authentication success (Alice) +</td>
<td>(1 × Alice)</td>
</tr>
<tr>
<td>Prelude LML</td>
<td></td>
</tr>
<tr>
<td>User login successful (Alice)</td>
<td></td>
</tr>
</tbody>
</table>
Find relations

<table>
<thead>
<tr>
<th></th>
<th>Alerts</th>
<th>Filter</th>
<th>Enhanced alerts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meta-IDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhancement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconstruct</td>
<td></td>
<td></td>
<td>Correlated alerts</td>
</tr>
<tr>
<td>Find relations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attacks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enhanced alerts</td>
<td></td>
</tr>
</tbody>
</table>
Find relations

Attack reconstruction

- Try to reconstruct the attack (events and timeline)
- Match vs patterns of known attacks
Find relations

<table>
<thead>
<tr>
<th>Correlated Alert</th>
<th>Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence: Scan +</td>
<td>Attack</td>
</tr>
<tr>
<td>Incoming connection +</td>
<td>High success probability</td>
</tr>
<tr>
<td>Outgoing connection</td>
<td>known pattern</td>
</tr>
</tbody>
</table>

Pierre Chifflier, Sébastien Tricaud

Intrusion Detection Systems Correlation: a Weapon of Mass Investigation
Find relations

Meta-IDS \rightarrow Filter \rightarrow Enhancement

Alerts \rightarrow Filtered alerts \rightarrow Enhanced alerts

Reconstruct \leftarrow Find relations

Attacks \leftarrow Correlated alerts

Meta-IDS

Filter

Enhancement

Reconstruct

Find relations

Alerts

Filtered alerts

Enhanced alerts

Correlated alerts
Find relations

Trust Score evaluation

- Attack is reconstructed and identified
- Trust Score is part of the decision to react
- Ability to capture the whole session by sending commands to agents
Find relations

Reaction

- Report problem (mail)
- Archive
- Prepare a visualization
- Counter-measure
 - (try to) block attack (*dangerous* !)
 - Collect more information
 - Send commands to agents
- Notify

![Brute force attack](image)
1. Introduction

2. Correlation

3. Visualization

4. Conclusion
Graphical representations

IDS visualization

- Required to manage large amount of data
- Helps to focus on what is important
- Uses the human correlation engine
- Helps to write correlation signatures
Graphical representations

Problem

- Alert are complex objects
- Numerous criteria (N-dimensional plot)
- How to graph correctly?
Graphical representations

Visualization techniques

What we use:

- Parallel coordinate plot
- 2D nodes
- 3D nodes
- Starplot
- Other (Treemap, ...)
Graphviz makes easy to use relations

2D nodes

Graphical representations

INL_101/103 Byd MacDonald, 75019 Paris, France
Graphical representations

Starplot

![Starplot Diagram](image-url)
Visualization dilemma: take the right parameters for the right graph
Visualization dilemma: take the right parameters for the right graph
Relevant parameters from IDMEF paths

- Source \((alert.source(0).node.address(0).address) \)
- Destination \((alert.target(0).node.address(0).address) \)
- Impact \((alert.assessment.impact.severity) \)
- Completion \((assessment.impact.completion) \)
- Attack vector \((alert.classification.text) \)
- Agent type \((analyzer(0).class) \)
Graphical representations

Code 1/3

- Based on Prelude IDS
- High-level language
- Python + Prelude Easy bindings

```
svn co http://svn.prelude-ids.org/libprelude/branches/libprelude-easy-bindings
```
Code 2/3

How to get alerts

```python
from PreludeEasy import *

client = ClientEasy("pig", Client.IDMEF_READ)
client.AddConnection("192.168.33.215")
client.Start()
idmef = client.RecvIDMEF()
```
Graph Objects (GO!)

```python
pen = QtGui.QPen()
p = pen.setColor(colorize_impact_severity(idmef))

line1_y = GetYPos(
    idmef.Get("alert.target(0).node.address(0).address"))
line2_y = GetYPos(
    idmef.Get("alert.classification.text"))

scene.addLine(
    line1_x, line1_y,
    line2_x, line2_y,
    pen)
```
Graphical representations

Prelude IDMEF Grapher (pig)

- Shows IDMEF paths
- Uses Prelude IDMEF pool
- Interesting to quickly understand a scanner
- Snort and LML are used as agents
Saint: 166 alerts generated
Retina: 76 alerts generated
Nessus: 1019 alerts generated
RTGraph3d
We were jealous of rtgraph3d ;-)

Available at http://www.dindinx.net/graphgl/
Wolfotrack: Netfilter connection tracker made easy
Visualization Pros and Cons

<table>
<thead>
<tr>
<th>Feature</th>
<th>Starplot</th>
<th>2D</th>
<th>3D</th>
<th>Parallel Coordinate Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large number of alerts</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Large number of criteria</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time base representation</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Easy to read</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Live filtering</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Examples

Summary

- Visualization is still under construction
- Until now, parallel multi-axes view is the best we’ve found
- We still do not know the best view for the best criterion
- There is not just one good visualization
Future work

- Understand application layer better
- For how long should we monitor an attack?
- Write more correlation rulesets
- Find better visualization models
Acknowledgment

- INL staff
- Yoann Vandoorselaere
- Philippe Saadé
- David Odin
- RV Martin
- Elodie and Anthony
Questions?

Thank you for your attention

Contact us!
- Pierre Chifflier <p.chifflier@inl.fr> https://www.wzdftpd.net/blog
- Sébastien Tricaud <s.tricaud@inl.fr> http://www.gscore.org/blog
- Prelude IDS http://www.prelude-ids.org
- Prelude IDS Trac http://trac.prelude-ids.org
References

Prelude user architecture
Example: NuFW

Example of agent: NuFW (http://www.nufw.org)

- **authenticating** firewall, based on user identity
- Provides a native Prelude module for log
- Add information on users on each connection
- Add valuable information for correlation
- Allows to strictly apply the Security Policy
Example of alert: NuFW (1)

- Example of IDMEF alert, with interesting fields.
- Alert emitted for a new HTTP connection using Firefox.

messageid: 5478076470
analyzer(1):
 analyzerid: 2334565015741136
 name: nufw
 manufacturer: http://www.nufw.org/
 model: NuFW
 version: 2.3.0 ($Revision: 3475 $)
 class: Firewall
 ostype: Linux
 osversion: 2.6.20-15-386
 process:
 name:
 pid: 15197
Example of alert: NuFW (2)

create_time: 29/06/2007 11:26:24.0 +02:00
classification:
 text: Connection opened
detect_time: 29/06/2007 11:32:56.0 +02:00
analyzer_time: 29/06/2007 11:32:56.642005 +02:00
source(0):
 spoofed: unknown (0)
node:
 category: unknown (0)
address(0):
 category: ipv4-addr (7)
 address: 192.168.0.2
user:
 category: application (1)
user_id(0):
 type: current-user (1)
 name: pollux
 number: 1000
process:
 name: firefox
 path: /usr/bin/firefox
service:
 iana_protocol_number: 6
 iana_protocol_name: tcp
 port: 3489
Example of alert: NuFW (3)

target(0):
 decoy: unknown (0)
 node:
 category: unknown (0)
 address(0):
 category: ipv4-addr (7)
 address: 82.165.85.221
 service:
 iana_protocol_number: 6
 iana_protocol_name: tcp
 port: 80
 assessment:
 impact:
 severity: low (2)
 type: user (5)
 description: Connection state changed
Our attack classification:

- **Authentication**
 - Local user
 - System user
 - Admin user
 - Other

- **Probe**
 - Protocol
 - Scan
 - Sniff
 - Users
 - Other

- **Corruption**
 - File
 - Application
 - Other

- **Availability (Denial of Service)**
 - Resource consumption
 - User account locking
 - Application crash
 - Other
Our classification

- The alert itself is *not* sufficient to find the category
- **Use the alert (low-level), correlation, to find the type (category) of the attack**
- No global catch-all category (one per section)
- **clear separation between the goal and the type**
- Don’t mix the goal with the type of the attack: A file corruption may be used for Probe as well as for Penetrate (the same exploit is often used for Probe and Penetrate)
- We group attack means in each defined Goal